Pozostale

 0    53 adatlap    adamomasz
Nyomtatás játszik ellenőrizze magát
 
kérdés - válasz -
Algorytm Kruskala
kezdjen tanulni
union-find Rozpatruje krawędzie w kolejności niemalejących wag i dodawaj do T te, które nie tworzą cyklu z poprzednio dodanymi, pozostałe odrzucaj, do momentu, gry T nie tworzy drzewa rozpinającego.
Graf planarny
kezdjen tanulni
graf, który można narysować na płaszczyźnie bez przecięć krawędzi.
Rysunek płaski
kezdjen tanulni
rysunek grafu planarnego taki, gdzie nie przecinają się krawędzie.
Liczba przecięć -
kezdjen tanulni
cr(G) - najmniejsza możliwa liczba przecięć krawędzi w dowolnym rysunku grafu G na płaszczyźnie. Miara “nieplanarności” grafu.
Grubość grafu
kezdjen tanulni
najmniejsza liczba „przezroczystych warstw” zawierających rysunki płaskie podgrafów G, które „złożone” dałyby graf G.
Ściana
kezdjen tanulni
dowolny maksymalny obszar spójny nie będący częścią grafu (krawędzią ani wierzchołkiem) w tym rysunku płaskim.
Ściana nieskończona
kezdjen tanulni
jedyna ściana nieograniczona (powyżej: f4 ).
Rzut stereograficzny
kezdjen tanulni
G=kładziemy sferę na płaszczyźnie ● Rysujemy dowolny obiekt na sferze (Uwaga: nie można tylko rysować po wierzchołku sfery) ● Rzut stereograficzny stanowi cień,
jaki rzucałby rysunek gdyby umieścić punktowe źródła światła w wierzchołku sfery
Graf wielościanu
kezdjen tanulni
graf utworzony przez wierzchołki i krawędzie wielościanu
Graf geometrycznie dualny G*
kezdjen tanulni
zastępujemy każdą ścianę G wierzchołkiem w G* ● 2 wierzchołki w G* są połączone krawędzią w G* ⇔ istnieje odpowiadająca im krawędź w G, która rozgranicza odpowiednie ściany w G.
Graf abstrakcyjnie dualny
kezdjen tanulni
- czyli istnieje taka wzajemnie jednoznaczna relacja między zbiorami krawędzi G i G ∗, że cykle w G odpowiadają krawędziom w G ∗
k-kolorowanie wierzchołków
kezdjen tanulni
- Przez kolorowanie wierzchołków grafu G nazywamy takie przyporządkowanie każdemu z jego wierzchołków pewnego koloru, reprezentowanego umownie przez liczbę naturalną, że żadne dwa sąsiednie wierzchołki nie mają przyporządkowanego tego samego koloru. G
. k-chromatyczny
kezdjen tanulni
gdzie liczba chromatyczna 𝜒(G) wynosi k.
Liczba chromatyczna 𝜒(G)
kezdjen tanulni
najmniejsza liczba k taka, że graf jest k-kolorowalny.
k-kolorowalnosc krawędzi
kezdjen tanulni
Graf jest k-kolorowalny(e) (k-kolorowalny krawędziowo) jeżeli jego krawędzie można pokolorować tak, że żadne dwie krawędzie incydentne z tym samym wierzchołkiem nie mają tego samego koloru.
Indeks chromatyczny𝜒’(G)
kezdjen tanulni
najmniejsza taka liczba k, że graf G jest k-kolorowalny(e), czyli krawędziowo.
Funkcja chromatyczna,
kezdjen tanulni
Funkcją chromatyczną PG (k) grafu G nazywamy funkcję, której wartość to liczba sposobów pokolorowania wierzchołków grafu G przy pomocy k kolorów
Średnica grafu -
kezdjen tanulni
diam(G): maksymalna odległość między wierzchołkami w tym grafie.
Ekscentryczność wierzchołka
kezdjen tanulni
ecc(v): maksymalna odległość od innego wierzchołka.
Promień grafu
kezdjen tanulni
rad(G): minimalna ekscentryczność wierzchołka w tym grafie.
Wierzchołek centralny
kezdjen tanulni
o minimalnej ekscentryczności
Centrum grafu
kezdjen tanulni
graf indukowany na zbiorze wierzchołków centralnych grafu G.
Dualność
kezdjen tanulni
Istnieją zagadnienia optymalizacyjne posiadające specyficzną cechę „dualności”, tzn. zadanie maksymalizacji pewnej funkcji jest równoważne zagadnieniu minimalizacji innej funkcji.
. Zbiór niezależny
kezdjen tanulni
- taki podzbiór X wierzchołków, że żadne dwa różne wierzchołki z X nie są sąsiednie.
. Pokrycie wierzchołkowe
kezdjen tanulni
w grafie G = (V, E) nazywamy taki podzbiór X wierzchołków V, że każda krawędź z E jest incydentna z co najmniej jednym wierzchołkiem z X.
Sieć przepływowa
kezdjen tanulni
- Sieć przepływowa ze źródłem s i ujściem t to graf skierowany G = (V, E) z wymiernymi, nieujemnymi wagami na krawędziach danymi przez funkcję (przepustowość) c: E → Q+,
przy czym indeg(s) = 0 i outdeg(t) = 0. Wagę c(e) krawędzi e ∈ E nazywamy przepustowością krawędzi.
Przepływ
kezdjen tanulni
Przepływ w sieci G z funkcją przepustowości c: E → Q+ to taka funkcja f: E → Q+ ∪ {0}, która spełnia warunki: ● f (e) ≤ c(e) dla każdej krawędzi e ∈ E (nieprzekraczalność przepustowości)
dla każdego wierzchołka poza s i t zachodzi: prawo zachowania przepływu w węzłach
Ścieżka powiększająca
kezdjen tanulni
ścieżka powiększająca dany przepływ f to taka ścieżka nieskierowana (tzn. krawędzie
● każda krawędź e skierowana od źródła do ujścia jest nienasycona (krawędź nasycona to spełniająca warunek: f(e) = c(e)) ● dla każdej krawędzi ścieżki e skierowanej przeciwnie (od ujścia do źródła) f (e) > 0.
Łańcuchy Markowa
kezdjen tanulni
macierz prawdopodobieństwa przejść P wymiaru n x n wraz z n-wymiarowym wektorem wierszowym x
Klasyfikacja stanów (Markowa)
kezdjen tanulni
powracający wtedy i tylko wtedy, gdy będąc w nim w momencie t prawdopodobieństwo ponownego bycia w nim w pewnym czasie t’ > t wynosi 1 (na pewno wrócimy) • chwilowy wtedy i tylko wtedy gdy nie jest powracający
• pochłaniający wtedy i tylko wtedy gdy prawdopodobieństwo przejścia w jednym kroku z v do innego stanu wynosi 0 • okresowy o okresie 1 < τ ∈ N wtedy i tylko wtedy gdy powrócić do stanu v można tylko po liczbie kroków będącej wielokrotnością τ
Liczba drzew rozpinających grafu pełnego)
kezdjen tanulni
Graf pełny Kn ma dokładnie n n-2 drzew rozpinających
charakteryzacja dwudzielnych przez cykle)
kezdjen tanulni
Jeżeli graf jest dwudzielny, to nie zawiera cykli nieparzystych!
Tw. Eulera "charakteryzacja grafów eulerowskich przez stopnie wierzchołków)
kezdjen tanulni
Graf spójny jest Eulerowski wtedy i tylko wtedy, gdy każdy jego wierzchołek ma stopień parzysty.
Tw. Orego):
kezdjen tanulni
Jeśli graf prosty G ma n wierzchołków (gdzie n ≥ 3) oraz deg(v) + deg(w) ≥ n dla każdej pary wierzchołków niesąsiednich v i w, to graf G jest hamiltonowski.
Tw. Cayleya
kezdjen tanulni
Istnieje n n-2 różnych n-wierzchołkowych drzew etykietowanych.
Kodowanie prufera
kezdjen tanulni
1. znalezienia liscia ktory ma najmniejsza etykiete, dodanie sasiada do zbioru S i usuniecie z grafu tego liscia, powtarzaj az graf stanie sie K2
(Nieplanarność K3,3 i K5 ):
kezdjen tanulni
Grafy K5 i K3,3 nie są planarne (tzw. Grafy Kuratowskiego) (dowód polega na bezpośrednim sprawdzeniu wszystkich możliwości narysowania) Wniosek: Jeśli graf zawiera graf Kuratowskiego jako podgraf to jest nieplanarny
(Tw. Kuratowskiego):
kezdjen tanulni
Dany graf jest planarny ⇔ nie zawiera podgrafu homeomorficznego z grafem K5 lub z grafem K3,3.
"Formuła Eulera" dla płaszczyzny):
kezdjen tanulni
Niech G będzie rysunkiem płaskim spójnego grafu płaskiego i niech n, m i f oznaczają odpowiednio liczbę wierzchołków, krawędzi i ścian grafu G. Wtedy n - m + f = 2
Idempotentność operacji dualności)
kezdjen tanulni
Jeśli graf G jest spójnym grafem płaskim, to graf G** jest izomorficzny z grafem G.
Zależność rozcięć i cykli przy dualności)
kezdjen tanulni
Niech G będzie grafem planarnym i niech G* będzie grafem geometrycznie dualnym do grafu G. Wówczas zbiór krawędzi grafu G tworzy cykl w G ⇔ odpowiadający mu zbiór krawędzi grafu G* jest rozcięciem w G*.
Symetryczność abstrakcyjnej dualności)
kezdjen tanulni
Jeżeli G* jest grafem abstrakcyjnie dualnym do grafu G, to graf G jest abstrakcyjnie dualnym do grafu G*
(d+1)-kolorowalność, gdzie d max stopień)
kezdjen tanulni
Jeśli G jest grafem prostym, w którym największym stopniem wierzchołka jest Δ, to graf G jest (Δ+1)-kolorowalny
Tw. Brooksa)
kezdjen tanulni
eśli G jest spójnym grafem prostym, niebędącym grafem pełnym, i jeśli największy stopień wierzchołka grafu G wynosi Δ (gdzie Δ ≥ 3), to graf G jest Δ-kolorowalny.
6-kolorowalność planarnych prostych
kezdjen tanulni
Każdy planarny graf prosty jest 6-kolorowalny.
2-kolorowalność map eulerowskich)]
kezdjen tanulni
Mapa G jest 2-kolorowalna(f) ⇔ graf G jest grafem eulerowskim.
k-kolorowalność(f)
kezdjen tanulni
mapa jest k-kolorowalna(f) ⇔ jej ściany można tak pokolorować k kolorami, że po obu stronach każdej krawędzi jest inny kolor
kolorowalność przy dualności)]
kezdjen tanulni
Niech G będzie grafem planarnym bez pętli i niech G* będzie grafem geometrycznie dualnym do grafu G. Wówczas graf G jest k-kolorowalny(v) ⇔ gdy graf G* jest k-kolorowalny(f). Wniosek: Każda mapa jest 4-kolorowalna
Tw. Vizinga
kezdjen tanulni
: Jeśli G jest grafem prostym, w którym największy stopień wierzchołka wynosi Δ, to: Δ ≤ χ ’(G) ≤ Δ+1 (gdzie χ ’(G) to indeks chromatyczny).
algorytm Fleury'ego
kezdjen tanulni
1. Zacznij cykl w dowolnym wierzchołku a. Usuwaj z grafu przechodzone krawędzie i wierzchołki izolowane powstające w wyniku usuwania tych krawędzi b. W każdym momencie przechodź przez most tylko wtedy, gdy nie masz innej możliwości. u
Tw. Forda Fulkersona -
kezdjen tanulni
Wartość maksymalnego przepływu w każdej sieci zawsze równa jest minimalnej wartości przekroju w tej sieci.
Przekrój sieci
kezdjen tanulni
rozcięcie w grafie reprezentującym sieć, które oddziela źródło od ujścia.
Twierdzenie o kojarzeniu małżeństw
kezdjen tanulni
Warunek konieczny i wystarczający rozwiązania problemu kojarzenia małżeństw to by dla każdego zbioru k dziewcząt ze zbioru V1 wszystkie one znały co najmniej k chłopców ze zbioru V2.

Kommentár közzétételéhez be kell jelentkeznie.