<3

 0    46 adatlap    chomikmimi
letöltés mp3 Nyomtatás játszik ellenőrizze magát
 
kérdés język polski válasz język polski
sąsiadujące ze sobą komórki robocze są połączone
kezdjen tanulni
niskooporowymi połączeniami szczelinowymi, które znajdują się w obrębie dysków wstawkowych, co umożliwia przepływ prądów jonowych między nimi wskutek otwarcia koneksonów
eżeli prądy jonowe przepływające z komórki A do komórki B i C są wystarczające do osiągnięcia przez ich błonę komórkową wartości potencjału progowego,
kezdjen tanulni
wygenerowane zostaną w nich
hipernatremia
kezdjen tanulni
zwiększa częstość potencjałów czynnościowych w SA, a zmniejsza kurczliwość mięśnia sercowego poprzez działanie wymiennika NCX
hipernatremia zwiększa częstość potencjałów czynnościowych w SA, a zmniejsza kurczliwość mięśnia sercowego poprzez działanie wymiennika NCX, który
kezdjen tanulni
przy zwiększeniu się stężenia jonów sodu wewnątrz komórki, zmienia działanie i transportuje z komórki jony sody a transportuje do wewnątrz jony wapnia"
zjawisko rezerwy propagacji
kezdjen tanulni
prądy jonowe z drugiej komórki w sercu są większe niż wymagane, silniejszy niż potrzebny do wygenerowania potencjały czynnościowego
różnica w charakterze prądów jonowych
kezdjen tanulni
komórka rozrusznikowa a kardiomiocyt roboczy -> prąd wapniowy  między kardiomiocytami roboczymi -> prąd sodowo-wapniowy
myocardium przedsionków i komór posiada
kezdjen tanulni
dużą gęstość kanałów potencjałozależnych kanałów sodowych, co pomaga generować duży depolaryzujący prąd sodowy w czasie fazy 0 potencjału czynnościowego; prąd ten rozprzestrzenia się szybko między komórkami zapewniając szybkie przewodzenie
zmniejszenie pobudliwości komórki powoduje
kezdjen tanulni
zmniejszenie szybkości narastania lub amplitudy depolaryzacji w czasie fazy 0
szybkość przewodzenia zmniejsza się więc wraz ze
kezdjen tanulni
padkiem pobudliwości błony komórkowej np. skrajna hiponatremia może prowadzić do wystąpienia bloku przewodzenia
potencjały czynnościowego rozprzestrzeniają się
kezdjen tanulni
od endocardium do epicardium, od koniuszka do podstawy
Węzeł przedsionkowo-komorowy
kezdjen tanulni
anatomicznie węzeł AV znajduje się w obrębie trójkąta Kocha znajdującego się u podstawy prawego przedsionka
Węzeł przedsionkowo-komorowy: zbudowany jest z
kezdjen tanulni
zbudowany jest z 3 stref zróżnicowanych morfologicznie i czynnościowo zróżnicowanej
zbudowany jest z 3 stref zróżnicowanych morfologicznie i czynnościowo zróżnicowanej AV
kezdjen tanulni
strefa AN (przedsionkowo węzłowa) - 10% komórek zawiera kanały HCN, które odpowiadają za wł. rozrusznikowe  strefa N (węzłowa) - praktycznie wszystkie mają HCN  strefa NH (węzłowo-pęczkowa) - praktycznie wszystkie mają HCN
strefa AN
kezdjen tanulni
- obszar przejściowy między miocytami przedsionka a częścią węzłową, posiada głównie komórki o stałym potencjale spoczynkowym tj. -65mV,
- obszar przejściowy między miocytami przedsionka a częścią węzłową, posiada głównie komórki o stałym potencjale spoczynkowym tj. -65mV,
kezdjen tanulni
które mają zdolność sumowania docierających potencjałów czynnościowych z mięśni przedsionków, oraz drogami Bachamana, Weckenbacha i Thorela, co umożliwia powstanie potencjału przewodzonego do kolejnej strefy węzła AV
strefa N
kezdjen tanulni
- właściwy węzeł zbudowany jest z komórek podobnych morfologicznie do komórek rozrusznikowych SA, potencjał spoczynkowy komórek tej strefy wynosi ok. -50 - -60 mV
strefa n
kezdjen tanulni
ze względu na obecność w ich sarkolemmie kanałów HCN zachodzi w nich PSD, ale czas jego trwania jest dłuższy niż w węźle SA, dlatego też częstość potencjałów czynnościowych jest mniejsza niż w węźle SA
strefa N-H
kezdjen tanulni
zawiera komórki podobne morfologicznie do komórek Purkiniego - komórek komorowego układu bodźcoprzewodząceg
Charakterystyka wezla AV
kezdjen tanulni
możliwe jest wystąpienie nawet w zdrowym sercu zakłócenia uporządkowania rozprzestrzeniania się pobudzeń w czasie i przestrzeni; przykładem jest tzw. podłużna dysocjacja czynnościowa węzła AV
podłużna dysocjacja czynnościowa węzła AV związana z
kezdjen tanulni
wystąpieniem w obrębie trójkąta Kocha 2 dróg przewodzenia:  droga szybka - międzywęzłowa wzdłuż ścięgna Todaro, droga fizjologiczna  droga wolna
droga wolna
kezdjen tanulni
wzdłuż płatka przegrodowego zastawki trójdzielnej w pobliżu ujścia zatoki wieńcowej (możliwa do usunięcia przez ablację)
Podłużna dysocjacja węzła AV - droga szybka i wolna
kezdjen tanulni
normalnie przewodzenie odbywa się w drodze szybkiej, dlatego że depolaryzacja dociera do zespolenia dróg poniżej węzła przed depolaryzacją w drodze wolne
fala depolaryzacji nie może jednak cofnąć się w czasie
kezdjen tanulni
w drodze wolnej, gdyż jej duży fragment jest w czasie refrakcji bezwzględnej; dwie fale depolaryzacji spotkają się więc w drodze wolnej i ulegają wygaszeniu
w przypadku wystąpienia dodatkowych pobudzeń przedsionkowych, fala depolaryzacji trafia
kezdjen tanulni
na okres refrakcji bezwzględnej drogi szybkiej związanej z poprzednim pobudzeniem
możliwe jest przejście
kezdjen tanulni
przejście depolaryzacji jedynie drogą wolną i jej dotarcie do komór
kiedy fala pobudzenia dociera już do
kezdjen tanulni
dolnego zespolenia dróg okres refrakcji bezwzględnej drogi szybkiej kończy się, co umożliwia wejścia fali depolaryzacyjnej na te drogę a przez nią do przedsionków, spowoduje to następne pobudzenie przedsionków
dolnego zespolenia dróg okres refrakcji bezwzględnej drogi szybkiej kończy się, co umożliwia wejścia fali depolaryzacyjnej na te drogę a przez nią do przedsionków, spowoduje to następne pobudzenie przedsionków jest to
kezdjen tanulni
jest to mechanizm kołowego przewodzenia pobudzenia tzw. reentry, ponieważ pobudzenia krążą w obwodzie zamkniętym
Dodatkowa droga łącząca poza węzłem AV przedsionki i komory:
kezdjen tanulni
normalnie przewodzenie odbywa się w drodze szybkiej, dlatego że depolaryzacja dociera do zespolenia dróg poniżej węzła przed depolaryzacją w drodze wolnej
Krążenie potencjałów czynnościowych w obwodach zamkniętych jest
kezdjen tanulni
najczęstszym mechanizmem arytmii, częstoskurczu, trzepotania i migotania przedsionków!
W warunkach fizjologicznych potencjały czynnościowe powstające w węźle SA rozprzestrzeniają się w sercu w sposób
kezdjen tanulni
uporządkowany w czasie i przestrzeni; dzięki istnieniu zjawiska refrakcji bezwzględnej fala depolaryzacja nie ma możliwości cofania się i po wystąpieniu w całym sercu ulega wygaszeniu.
Szybkość przewodzenia w mięśniu przedsionków i komór oraz w układzie bodźcotwórczym:
kezdjen tanulni
 miocyty przedsionków ok. 0,5 m/s  węzeł AV ok. 0,05 m/s  pęczek Hisa oraz jego lewa i prawa odnoga ok. 2 m/s  miocyty komór ok. 0,5 m/s  włókna Purkiniego ok. 4 m/s
w węźle AV dochodzi do zwolnienia przewodzenia potencjałów czynnościowych w wyniku: 1
kezdjen tanulni
wolnego narastania potencjału czynnościowego i jego niskiej amplitudy, co wynika z nieobecności potencjałozależnych kanałów sodowych i możliwości powstania szybkiego dokomórkowego prądu sodowego;
w węźle AV dochodzi do zwolnienia przewodzenia potencjałów czynnościowych w wyniku: 2
kezdjen tanulni
wysoki opór wewnętrzny będący efektem małej średnicy komórek węzła, głównie w obszarze N wysoki opór wewnętrzny będący efektem małej średnicy komórek węzła, głównie w obszarze N
w węźle AV dochodzi do zwolnienia przewodzenia potencjałów czynnościowych w wyniku: 3
kezdjen tanulni
małej liczby gap junctions między komórkami układu bodźcoprzewodzącego, wolniejsze/słabsze prądy jonowe b
b) opóźnienie przewodzenia między przedsionkami a komorami ma znaczenie fizjologiczne:1
kezdjen tanulni
zapewnia odstęp czasowy między skurczem przedsionków a skurczem komór, co pozwala na zakończenie depolaryzacji miocytów przedsionków i ich skurcz, przed skurczem przedsionkó
b) opóźnienie przewodzenia między przedsionkami a komorami ma znaczenie fizjologiczne:2
kezdjen tanulni
powoduje ograniczenie częstości impulsów przechodzących przez AV powodujących aktywację skurczu komór
Przewodzenie we włóknach Purkiniego:  łączą się z
kezdjen tanulni
miocytami odpowiednio prawej i lewej komory w warstwie podwsierdziowej
Purkiniego są
kezdjen tanulni
są najszybciej przewodzącymi elementami układu bodźcoprzewodzącego ze względu na obecność połączeń gap junctions o dużej i pośredniej przewodności, co odróżnia je od komórek węzła SA i AV gdzie są połaczenia o małej przewodności
komórki Purkiniego charakteryzują sie
kezdjen tanulni
zdolnością PSD która przebiega wolniej niż w komórkach SA i AV (od 30 do 40/min); długi czas tej fazy powoduje, ze pobudzenia z SA docierają w momencie gdy potencjał błony jest bardzo ujemny (od -85 do 75mV),
kalsekwestryna i kalretikulina
kezdjen tanulni
buforują jony wapnia w SER, nawet po uwolnieniu w siateczce jest dużo jonów wapnia w siateczce, dlatego SERCA działa wbrew gradientowi stężenia wapnia
Fazy cyklu sercowego
kezdjen tanulni
a) skurcz przedsionków b) dwie fazy dla każdej z komór serowych
1. faza skurczowa (systole)
kezdjen tanulni
obejmującą okres, gdy komory kurczą się i wyrzucają część zawartej krwi do dużych zbiorników tętniczych
2. fazę rozkurczową (diastole)
kezdjen tanulni
obejmującą okres relaksacji mięsnia komór, spadku w nich ciśnienia i wypełniania krwią
. objętość późno lub końcoworozkurczowa EDV
kezdjen tanulni
objętość krwi w komorze serca pod koniec skurczu przedsionka (180-200ml) - (im większa objętość późnorozkurczowa, tym większa objętość wyrzutowa) 2
objętość późno lub końcowoskurczowa ESV
kezdjen tanulni
objętość krwi w komorze pod koniec fazy wyrzutu (40-70 ml)
objętość wyrzutowa serca SV
kezdjen tanulni
objętość krwi wtłaczanej do tętnic w czasie skurczu komory (w ludzkim sercu w stanie spoczynku fizycznego i psychicznego wynosi 70-120ml); jest to różnica pomiędzy objętością późnorozkurczową i późnoskurczow

Kommentár közzétételéhez be kell jelentkeznie.